Heat Release

Outline

- ✓ Background
 - Flammability Testing & Fire Processes
 - PCFC Instrument Description
- √ Theory
 - PCFC
 - Heat Release Capacity
 - Fire Test Theory & Correlations
 - Molar Group Contributions
- ✓ Conclusions

Flammability Testing

✓ Extrinsic quantities resulting from the reaction of a macroscopic polymer sample to a severe thermal exposure

Burning Rate
 Ignitability

Flammability
 Fire Performance

✓ Fire test results are dependent on

Orientation Geometry Sample Size

Color Ambient Conditions Operator

✓ Thermal and mass diffusion effects dominate the fire behavior in large sample tests

✓ An <u>intrinsic material property</u> is needed to correlate fire performance

Fuel Generation Process

Pyrolysis Combustion Combustible & Non-+ O₂ Combustible Gases **Flame Polymer** Liquid Products & Tar -Solid Charred Residue **Endothermic Exothermic** Thermal feedback from flame

Char Formation

Charring in fires is an anaerobic process

Microcalorimeter Schematic

Pyrolysis-Combustion Flow Calorimeter

Forced Non-Flaming Combustion Test

Small Sample Size: ~1mg

Rapid Screening of Materials

Measured Values:
Heat Release Rate
Total Heat Release
Char Yield

Calculated Values:
Heat Release Capacity
Global E_a

Measured Heat Release Rates

Microcalorimeter Theory

Heat release rate by oxygen consumption normalized to initial sample mass

$$\dot{Q}_c(t) = \frac{E\Delta O_2}{m_o} = h_{c,v}^o(t) \left[\frac{-1}{m_o} \frac{dm(t)}{dt} \right]$$

Peak rate of heat release

$$\dot{Q}_c^{\text{max}} = \left[\frac{E\Delta O_2}{m_o}\right]_{\text{max}} = h_{c,v}^o \left[\frac{-1}{m_o} \frac{dm}{dt}\right]_{\text{max}} = h_{c,v}^o \frac{\beta(1-\mu)E_a}{eR T_p^2}$$

Heat Release Capacity

$$\eta_c = \frac{\dot{Q}_c^{\max}(\beta)}{\beta} = \frac{h_c^o(1-\mu)E_a}{eR T_p^2}$$

Material Property

Must satisfy the following conditions:

- 1. Independent of sample mass
- 2. Independent of heating rate
- 3. Measurable by different methods

Heat Release Capacity by TGA-GC/MS

T.V. Inguizilian, Correlating Polymer Flammability Using Measured Pyrolysis Kinetics, MS Thesis, University of Massachusetts, Amherst, January 1999.

Flammability Character - UL-94V vs. LOI

UL-94 - Vertical Bunsen Burner test based on operator observation where materials are classified by their burning behavior

Oxygen Index - Minimum amount of oxygen needed to sustain a candle-like flame for 3 minutes based on operator observation

	UL-94	LO
Vertical Test	X	X
Preheating of sample	X	
Radiant component	X	
Convective component	X	
Conductive component	X	X
·		

Upward versus Downward flame spread

Fire Test Correlations - UL-94 & LOI

Transition Region from self-extinguishing to readily burning: 200-400 J/g-K

Transition Region corresponds to 21-33 %O₂ in LOI

Cone Calorimeter

Bench Scale Flaming Combustion Test

Sample Dimensions: 10cm x 10 cm x 0.3cm

0-100 kW/m² incident heat flux

Measured Values:

heat release rate - O_2 consumption mass loss rate time to ignition $CO \& CO_2$ smoke generation

Calculated Values:
 critical heat flux
 heat of gasification
 ignition temperature
 thermal inertia (κρc)

Fire Test Correlations - Cone Calorimeter

Cone Calorimetry - Bench scale flaming combustion test measuring heat release by oxygen consumption

Fire Test Summary

✓ Fire Tests

- Flaming combustion tests where physical attributes influence the flammability
- Samples can be designed to give false passes in the tests
- Tests are hard to run and do not give quantitative results
- Multiple tests and rigorous calculations needed to obtain material properties

✓ PCFC

- Provides a material property directly
- Quantitative results that represent the total fuel value of a sample
- Quick & easy to run

Group Contribution Background

- Methods for predicting thermochemical data from molecular structure (Bensen 1968)
- ✓ Interactions of several atoms summed and approximated by structural groups (VanKrevelen 1972)
- ✓ Atomic-level bond topology used to predict molecular properties using connectivity indices (Bicerano, 1996)
- ✓ Structural group contribution method for flammability (Walters 2000)
- Group Contribution calculations can predict thermodynamic quantities such as:
 - Heat of Combustion
 - Char Yield
 - Heat Capacity

- Thermal Decomposition Temperature
- Glass Transition Temperature

✓ Theories of group contributions based on empirical correlations

Molar Group Contributions to η_c

Heat Release Capacity

$$\eta_c = \frac{\dot{Q}_c}{\beta} = \frac{h_c^o (1 - \mu) E_a}{eR T_p^2}$$

Approach: Write the heat release capacity terms as additive molar quantities

$$\mathbf{\Psi} = \frac{\boldsymbol{H} \boldsymbol{V} \boldsymbol{E}}{eR \boldsymbol{T}^2} = \frac{\left(\sum_{i} n_i H_i\right) \left(\sum_{i} n_i V_i\right) \left(\sum_{i} n_i E_i\right)}{eR \left(\sum_{i} n_i T_i\right)^2}$$

Expand summations over chemical groups, i, j, k... and neglect terms with mixed indices

$$\Psi = \sum_{i} n_{i} \frac{H_{i} V_{i} E_{i}}{eR T_{i}^{2}} = \sum_{i} n_{i} \Psi_{i}$$

Obtain η_c in correct units from molar mass of component groups

$$\eta_c = \frac{\Psi}{M_o} = \frac{\sum_i n_i \Psi_i}{\sum_i n_i M_i} = \frac{\sum_i N_i \Psi_i}{\sum_i N_i M_i}$$

Calculating Heat Release Capacity

If η_c is a material property it should be calculable from additive molar group contributions like other polymer properties (e.g., heat capacity, refractive index, solubility parameter, etc.)

$$-O-CH2$$

$$CH-CH2-O-CH2$$

$$CH3$$

$$CH2-CH$$

$$CH2-O-CH2-CH$$

$$CH2-O-CH2-CH$$

Example: Bisphenol A Epoxy has 6 distinct chemical groups comprising the polymer repeat unit.

Calculating Heat Release Capacity

$$\begin{array}{c} -\text{CH}_2 \\ \text{*} \text{CH-CH}_2 \text{-O} \\ \text{$\stackrel{\downarrow}{\text{CH}_3}$} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \text{-CH}_2 \text{-CH}_$$

Chem ra l Gro u p i	N	Mi (g mo k)	Ψ	$N_i M_i$ (g mo e)	<i>N_i Ψ</i> (k Jmo ŧ-K)
Groupi			(k Jmo e-K)	(g mo t)	(к эшо е-к)
c		12	28.3	12	28.3
—CH	2	13	26.6	26	53.2
CH ₂	4	14	16.7	56	66.8
—СН ₃	2	15	22.5	30	45.0
_ <u></u>	2	76	28.8	152	57.6
<u> </u>	4	16	-11.6	64	-46.4
		T dal:		340	204.5

$$\eta_c = \frac{\Psi}{M} = \frac{\sum_{i} n_i \Psi_i}{\sum_{i} n_i M_i} = \frac{\sum_{i} N_i \Psi_i}{\sum_{i} N_i M_i} = \frac{204.5 \, kJ \, / \, mole - K}{340 \, g \, / \, mole} = 601 \, M_{g-K}$$

Molar Group Contributions to η_c

Group	Contribution (k Jmo łK)	Group	Contribution (k Juno lK)
	118*	-0-	-1 1 . 6
	77.0	_N=P	-1 3 . 8
→	69.5	—NH ₂	-1 3 . 9 *
→	30.6	—CF ₃	-1 4 . 8
—CH ₃ —C— —CH ₃	29.5	—C≡N	-17.6
	28.8	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-18.9*
	28.3	0 —s— = 0	-19.2 -19.8
—сн 	26.6	—он	-19.8
—СН3	22.5	—Br	-22.0
	19.0	O 	-22.0
→	18.7	c=0	-2 3 . 2 *
CH ₂	16.7		-25.5
- ♥	15.1	—сі	-34.7
C=C	9.7		-3 6 . 4 *
—н	8.1		Pendan t-3 9 . 5 Backbone:-1 3 . 7
NH	7.6	-n\	-43.0*

$$\eta_c = \frac{\Psi}{M_o} = \frac{\sum_i n_i \Psi_i}{\sum_i n_i M_i} = \frac{\sum_i N_i \Psi_i}{\sum_i N_i M_i}$$

Conclusions

✓ Heat Release Capacity is:

- A rate independent flammability parameter
- An intensive quantity (independent of sample mass)
- Measurable by different laboratory techniques
- A good predictor of fire and flammability behavior
- Calculable from chemical structure
- A material property: dynamic combustion potential

Acknowledgements

√FAA

✓ Dr. Stanislav Stoliarov